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Molecular Neurodegeneration

Decoding microglial immunometabolism: 
a new frontier in Alzheimer’s disease research
Eun Sun Jung1, Hayoung Choi1 and Inhee Mook‑Jung1,2,3*    

Abstract 

Alzheimer’s disease (AD) involves a dynamic interaction between neuroinflammation and metabolic dysregulation, 
where microglia play a central role. These immune cells undergo metabolic reprogramming in response to AD-related 
pathology, with key genes such as TREM2, APOE, and HIF-1α orchestrating these processes. Microglial metabolism 
adapts to environmental stimuli, shifting between oxidative phosphorylation and glycolysis. Hexokinase-2 facilitates 
glycolytic flux, while AMPK acts as an energy sensor, coordinating lipid and glucose metabolism. TREM2 and APOE 
regulate microglial lipid homeostasis, influencing Aβ clearance and immune responses. LPL and ABCA7, both asso‑
ciated with AD risk, modulate lipid processing and cholesterol transport, linking lipid metabolism to neurodegen‑
eration. PPARG further supports lipid metabolism by regulating microglial inflammatory responses. Amino acid 
metabolism also contributes to microglial function. Indoleamine 2,3-dioxygenase controls the kynurenine pathway, 
producing neurotoxic metabolites linked to AD pathology. Additionally, glucose-6-phosphate dehydrogenase 
regulates the pentose phosphate pathway, maintaining redox balance and immune activation. Dysregulated glucose 
and lipid metabolism, influenced by genetic variants such as APOE4, impair microglial responses and exacerbate AD 
progression. Recent findings highlight the interplay between metabolic regulators like REV-ERBα, which modulates 
lipid metabolism and inflammation, and Syk, which influences immune responses and Aβ clearance. These insights 
offer promising therapeutic targets, including strategies aimed at HIF-1α modulation, which could restore microglial 
function depending on disease stage. By integrating metabolic, immune, and genetic factors, this review underscores 
the importance of microglial immunometabolism in AD. Targeting key metabolic pathways could provide novel 
therapeutic strategies for mitigating neuroinflammation and restoring microglial function, ultimately paving the way 
for innovative treatments in neurodegenerative diseases.

Keywords  Microglia, Immunometabolism, Metabolic reprogramming, Neuroinflammation, APOE, TREM2, HIF, 
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Background
Alzheimer’s disease (AD) is a multifactorial and poly-
genic disorder resulting from complex interactions 
between various genetic and environmental factors 
[1]. The clinical heterogeneity of AD, characterized by 
diverse symptoms among patients [2–4], complicates 
therapeutic strategies. Additionally, AD is closely asso-
ciated with metabolic syndrome, which includes hyper-
tension, hyperlipidemia, obesity, and type 2 diabetes 
mellitus (T2DM) [5–8]. Given this complexity, the effi-
cacy of monotherapies, such as Aβ-targeting antibody 
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treatments, remains limited, highlighting the growing 
need for combination therapy strategies [9–11].

Consistent with this perspective, genome-wide asso-
ciation studies (GWAS) have identified numerous genetic 
risk factors for late-onset Alzheimer’s disease (LOAD), 
with a significant proportion being linked to micro-
glial function, underscoring their central role in disease 
pathology [12–14]. These risk genes are involved in 
essential microglial processes, including Aβ clearance, 
lipid metabolism, and inflammatory regulation, high-
lighting microglial dysfunction as a key driver of AD 
pathogenesis [14–16].

As the resident immune cells of the central nervous 
system (CNS), microglia play a crucial role in innate 
immune responses by rapidly detecting and responding 
to pathogen-associated molecular patterns (PAMPs) and 
damage-associated molecular patterns (DAMPs) [17–
21]. Upon activation, microglia produce pro-inflamma-
tory cytokines, and engage in phagocytic activity, making 
them key regulators of the pathological environment 
[22]. Consequently, their ability to clear Aβ and modulate 
neuroinflammation is critical in AD progression, high-
lighting the regulation of neuroinflammatory pathways as 
a promising therapeutic approach for AD [23–26].

Importantly, microglial function is closely linked to 
metabolic processes. Microglial plasticity—the ability to 
functionally and phenotypically adapt to environmen-
tal stimuli [27, 28]—is tightly regulated by metabolic 
flexibility [29, 30]. This metabolic adaptability enables 
microglia to efficiently utilize glucose, amino acids, and 
lipids to sustain energy-intensive processes, such as 
pro-inflammatory cytokine production and phagocyto-
sis, under both homeostatic and pathological conditions 
[29, 31–33].

Among the risk genes identified through GWAS, 
TREM2 and APOE stand out as key regulators of mul-
tiple metabolic pathways, including glucose, lipid, and 
amino acid metabolism [34–37]. By influencing micro-
glial energy balance, immune responses, and phagocytic 
activity, these genes further underscore their complex 
association with AD pathology [38–42].

Furthermore, recent multi-omics studies have revealed 
that distinct microglial phenotypes are strongly associ-
ated with specific metabolic pathways in the context of 
neurodegenerative diseases such as AD (Fig. 1, Table 1). 
These findings highlight the crucial role of microglial 
metabolic regulation in AD pathogenesis and suggest 
that targeting these pathways may provide novel thera-
peutic opportunities [43–45].

This review provides a comprehensive analysis of how 
key metabolic pathways—glucose, lipid, and amino acid 
metabolism—are altered in microglia under AD con-
ditions and their functional implications in disease 

progression. Each metabolic pathway is examined indi-
vidually to elucidate its specific role in microglial dys-
function and its contribution to AD pathogenesis. 
Additionally, the impact of major AD risk genes, TREM2 
and APOE, on these metabolic processes is explored, 
emphasizing their regulatory influence on microglial 
energy balance and immune responses. Lastly, key 
molecular mediators involved in microglial metabolism 
are highlighted, offering insights into the intricate regula-
tory mechanisms that drive metabolic adaptations in AD.

Microglial metabolic reprogramming is not merely 
a response to AD pathology [46–48] but actively drives 
disease progression, underscoring the critical role of 
immunometabolism in AD [49–51]. In AD, pathologi-
cal stimuli such as amyloid-beta (Aβ) and tau aggregates 
induce shifts in glycolysis, oxidative phosphorylation 
(OXPHOS), and lipid metabolism [52–54](Fig. 2). These 
changes are integral to microglial function, influencing 
their ability to clear toxic aggregates, modulate inflam-
mation, and maintain homeostasis [49–51].

Glucose metabolism is vital for microglial function 
[51, 55, 56]. The brain, despite its small size, consumes 
about 20% of the body’s energy, with glucose being the 
primary energy source. Microglia typically rely on oxi-
dative phosphorylation for energy in homeostatic con-
ditions but switch to glycolysis during inflammation, 
a shift that supports rapid energy production needed 
for immediate responses [57–59]. However, prolonged 
exposure to pathological stimuli such as Aβ can lead to 
a state of microglial immune tolerance, in which both 
glycolysis and OXPHOS are downregulated, impair-
ing microglial responsiveness and contributing to AD 
pathology [46, 60].

Lipid metabolism also plays a crucial role in microglial 
function [61–64]. Aβ-driven lipid droplets (LDs) accu-
mulation is linked to impaired phagocytosis and elevated 
reactive oxygen species (ROS) production, promoting 
neuroinflammation in AD [65, 66]. The involvement 
of a significant number of LOAD risk genes, including 
TREM2 and APOE, in lipid metabolism underscores the 
close relationship between microglial lipid metabolism 
and AD pathology [34, 37, 67].

In addition to glucose and lipids, microglia exhibit met-
abolic flexibility by utilizing alternative energy sources, 
such as amino acids, particularly in circumstances where 
glucose availability is limited. This metabolic adaptation 
enables microglia to sustain their critical functions under 
varying nutritional conditions [30, 68]. However, dysreg-
ulation of amino acid metabolism can exacerbate micro-
glial activation and neuroinflammation, particularly in 
microglia expressing the APOE4 allele [69].

The metabolic pathways essential for microglial func-
tion are not independent but are tightly interconnected, 
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influencing and regulating each other in a coordinated 
manner. TREM2 and APOE act as key regulators of 
microglial metabolism, orchestrating both metabolic and 
immune functions [39, 70]. TREM2, a receptor expressed 
on microglia, influences their metabolic state, lipid han-
dling, and inflammatory responses, and its loss-of-func-
tion variants are linked to an increased risk of AD [71]. 
Similarly, APOE, particularly the APOE4 isoform, alters 
microglial metabolism by disrupting multiple meta-
bolic pathways [72–74], leading to impaired immune 

responses and exacerbation of AD pathology. Further-
more, the intricate interplay between TREM2 and APOE 
adds another layer of complexity to the regulation of 
microglial metabolism and function.

Additionally, hypoxia-inducible factors (HIFs) and 
energy-sensing enzymes like adenosine monophos-
phate-activated protein kinase (AMPK) and hexokinase 
2 (HK2) are crucial in regulating microglial metabolism 
[29, 75, 76]. HIFs drive metabolic reprogramming under 
hypoxic conditions [77], AMPK acts as an energy sensor 

Fig. 1  Major metabolic alterations and regulatory factors in AD microglia revealed by immuno-metabolomics approaches. Microglia function 
and phenotype change dynamically as AD pathogenesis progresses, accompanied by significant metabolic alterations. Initially, these cells 
demonstrate metabolic flexibility, but as the disease becomes chronic, microglia gradually lose their adaptive capacity. This reliance on biased 
and fragmented metabolic pathways eventually leads to insufficient energy and material supply, resulting in functional impairment and accelerated 
disease progression. The first notable metabolic shift in AD microglia involves glucose metabolism, characterized by excessive glucose uptake 
and increased dependence on non-aerobic glycolysis via HIF-1α pathway. This change subsequently leads to the inhibition and breakdown 
of mitochondrial energy metabolism. Furthermore, prolonged exposure to Aβ plaques, neurofibrillary tangles (NFTs), and excessive cell debris 
dramatically alters overall lipid metabolism, resulting in the accumulation of lipid droplets (LDs). Microglia with excessive LD accumulation, known 
as lipid-droplet-accumulating microglia (LDAMs), exhibit significantly reduced phagocytic ability and enhanced inflammatory properties. Recent 
studies have highlighted the crucial roles of APOE and TREM2, both high-risk genes for AD, in mediating these metabolic transitions in microglia. 
These genes are increasingly recognized as key players in modulating microglial function and metabolism in the context of AD. The advent 
of multi-omics approaches has accelerated the identification of candidate substances involved in microglial function and metabolic regulation 
pathways. This comprehensive analysis provides a deeper understanding of the complex interplay between immune response and metabolism 
in AD microglia
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to maintain cellular energy homeostasis [78], and HK2 
plays a pivotal role in glucose metabolism [79]. Dysregu-
lation of these regulatory factors, which influence mul-
tiple metabolic pathways, may contribute to the chronic 
neuroinflammation and metabolic dysfunction observed 
in AD. Thus, in the later sections of this review, we will 
discuss how these key regulators of metabolic processes 
are modulated under AD conditions.

In summary, this review provides a comprehensive 
overview of metabolic pathways that regulate microglial 
function in AD. Starting with an exploration of energy 

substrates like glucose, lipids, and amino acids, we then 
delve into molecular mediators such as TREM2, APOE, 
and other regulators that shape microglial immunome-
tabolism. By integrating these findings, we aim to high-
light therapeutic opportunities targeting these pathways.

Main text
Microglial energy substrates and metabolism in AD
Glucose metabolism
Glucose is the main source of energy for the cells in 
the CNS, including microglia [80]. These cells require 

Fig. 2  An overview of major metabolic pathways. Cellular metabolism is a complex network of interconnected pathways that respond to internal 
and external signals to meet the cell’s needs. These pathways function in a coordinated manner to produce essential components for cellular 
function and are subject to regulation by various signaling mechanisms. Here is an overview of the major metabolic pathways and their 
roles. Glycolysis is the process by which glucose is converted into pyruvate. Subsequently, pyruvate can further transform into lactate or be 
integrated into the tricarboxylic acid (TCA) cycle. Within the TCA cycle, pyruvate undergoes a series of reactions that produce NADH and FADH2, 
which the oxidative phosphorylation (OXPHOS) electron transport chain (ETC) system uses to generate ATP. Furthermore, glycolysis supplies 
intermediates for the pentose phosphate pathway (PPP), which produces ribose for nucleotides and amino acids. Lipid metabolism involves 
synthesizing fatty acids and lipid transportation, a process involving citrate derived from the TCA cycle. Moreover, it has been demonstrated 
that fatty acids can undergo oxidation, generating NADH and FADH2, which, in turn, promote ATP production through the OXPHOS. Amino acid 
metabolism also provides vital nutrients for the TCA cycle and plays a significant role in protein biosynthesis and adequate cellular activation. The 
intricate interconnection and regulation of these pathways by cellular signaling ensure metabolic activity aligns with the cell’s requirements. This 
coordinated system enables cells to produce energy and essential molecules for various physiological processes efficiently
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significant energy expenditure to perform critical func-
tions such as surveillance and phagocytosis, relying on 
ATP, the primary cellular energy molecule, produced 
through various metabolic processes [81, 82]. Gly-
colysis and mitochondrial oxidative phosphorylation 
(OXPHOS) are the two major metabolic pathways that 
provide energy for microglia [51, 82]. Glycolysis involves 
a series of enzyme-catalyzed reactions that convert glu-
cose to pyruvate or lactate. Following glycolysis, pyru-
vate is converted into acetyl coenzyme A (acetyl CoA) 
to enter the tricarboxylic acid (TCA) cycle for OXPHOS 
[83]. Although glycolysis produces ATP less efficiently 
than OXPHOS, it allows for rapid ATP production 
without requiring oxygen [84]. Typically, homeostatic 
microglia primarily rely on OXPHOS for ATP produc-
tion, while inflammatory microglia are thought to switch 
to glycolysis through metabolic reprogramming to meet 
their energy needs [57–59]. This shift is advantageous 
for microglia as it allows them to respond quickly to 
danger signals [81, 85], a crucial capability in conditions 
such as AD.

Recent evidence indicates that microglia can rap-
idly switch their metabolism between glycolysis and 
OXPHOS depending on specific conditions like those 
present in AD [46, 86, 87]. For example, Aβ has been 
shown to induce metabolic reprogramming in primary 
mouse microglia, shifting their preferred ATP produc-
tion pathway from OXPHOS to glycolysis, a shift nec-
essary for energy-intensive processes like phagocytosis 
and the production of pro-inflammatory cytokines [46, 
86]. However, microglia exposed continuously to Aβ may 
enter a state of tolerance, marked by a significant reduc-
tion in energy metabolism, encompassing both OXPHOS 
and glycolysis, leading to diminished responsiveness to 
external stimuli [46, 86]. This tolerance phase, character-
ized by reduced cytokine secretion and impaired phago-
cytosis, may contribute to the accumulation of Aβ and 
the progression of AD pathology. Indeed, these charac-
teristics of immune tolerance lend support to research 
findings suggesting that dying microglia with lost Aβ 
phagocytic function may contribute to amyloid plaque 
growth, further exacerbating the disease process [88].

Multiple studies have reported alterations in glucose 
metabolism in microglia within various AD mouse mod-
els. For instance, both APP-PS1 [89–91] and 3xTg AD 
mice [92, 93] and exhibit increased glycolysis and upreg-
ulation of glycolytic enzymes, although these effects 
diminish with age [92]. Similarly, microglia from 5 × FAD 
mice display elevated levels of free NAD(P)H, indicating 
enhanced glycolytic activity [94]. However, it is essential 
to consider the broader metabolic landscape, as paral-
lel pathways—such as the pentose phosphate pathway 
(PPP)—also contribute to NAD(P)H levels [95, 96]. In 

response to immune activation by lipopolysaccharide 
(LPS) and interferon-γ (IFN-γ), microglia shift their glu-
cose metabolism toward both glycolysis and the PPP [97]. 
The PPP, which begins with glucose-6-phosphate, serves 
as a key metabolic pathway operating alongside glyco-
lysis [96]. It provides essential cellular components such 
as NADPH, ribose-5-phosphate, and glycolytic interme-
diates. NADPH, in particular, is critical for regulating 
oxidative stress and maintaining reactive oxygen species 
(ROS) homeostasis [98, 99]. Its levels are primarily con-
trolled by glucose-6-phosphate dehydrogenase (G6PD), 
the rate-limiting enzyme of the PPP [100, 101]. A deli-
cate balance in G6PD activity is essential, as dysregula-
tion can lead to oxidative stress-induced cellular damage 
[101, 102]. In microglia exposed to Aβ, increased glu-
cose consumption is accompanied by upregulated G6PD 
activity, leading to elevated mitochondrial ROS produc-
tion and pro-inflammatory metabolic activation [103, 
104]. NADPH also plays a significant role in lipid metab-
olism, as it is required for fatty acid synthesis [98, 105]. 
This underscores the intricate interconnectivity of meta-
bolic pathways in microglia, demonstrating that glucose 
metabolism does not function in isolation but is closely 
coordinated with other metabolic processes [106, 107]. 
Understanding these interactions is crucial for elucidat-
ing microglial metabolic phenotypes in AD.

In addition to glucose, microglia can utilize lactate and 
pyruvate, key intermediates of glucose metabolism, as 
alternative energy sources [59, 107–109]. Upon exposure 
to inflammatory stimuli such as LPS or Aβ, microglia 
undergo a metabolic shift from oxidative phosphoryla-
tion (OXPHOS) to glycolysis, leading to increased lactate 
production [46, 110]. While this shift initially supports an 
acute immune response, excessive lactate accumulation 
may also influence inflammation. Some studies suggest 
that exogenous lactate can mitigate LPS-induced inflam-
matory responses in both BV2 microglial cell lines and 
mice, indicating potential anti-inflammatory effects [111, 
112]. However, other investigations have shown that 
lactate exposure impairs microglial phagocytic activity, 
reducing their ability to engulf and clear Aβ aggregates 
[113]. Enhanced glycolysis in microglia can also lead to 
a self-reinforcing metabolic cycle, further amplifying 
glycolytic activity. This phenomenon is particularly evi-
dent in 5 × FAD mice, where microglia surrounding Aβ 
plaques exhibit a sustained glycolytic state [114]. A major 
contributing factor is lactate-induced histone lactylation, 
an epigenetic modification that enhances the expression 
of glycolysis-related genes, thereby reinforcing metabolic 
reprogramming [114, 115]. This positive-feedback loop 
disrupts microglial homeostasis, intensifies neuroinflam-
mation, and ultimately accelerates AD progression. Inter-
estingly, targeted inhibition of PKM2 (a key glycolytic 
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enzyme that promotes lactate production) in micro-
glia of 5XFAD mice resulted in a reduction of amyloid 
plaques and improvements in cognitive function [114]. 
These findings suggest that glycolytic reprogramming 
and lactate metabolism play a crucial role in microglial-
mediated neuroinflammation. However, further research 
is needed to fully elucidate the mechanistic link between 
lactate-driven epigenetic changes and microglial dys-
function in AD.

Microglia utilize glucose through various glucose 
transporters (GLUTs), with GLUT3 being the predomi-
nant isoform under normal physiological conditions. 
However, in inflammatory environments, GLUT1 expres-
sion is upregulated to facilitate increased glucose uptake 
and enhance glycolysis, thereby meeting the heightened 
energy demands associated with immune activation 
[116–118]. In AD, cerebral glucose metabolism declines 
significantly, a phenomenon strongly linked to cognitive 
impairment [119, 120]. Studies have reported reduced 
levels of GLUT1 in the brains of AD patients [121] and 
AD mouse models [122, 123]. This reduction in GLUT1 
expression has been associated with exacerbated amyloid 
pathology and worsened cognitive function. Notably, in 
APP-PS1 model mice, GLUT1 levels in the hippocampus 
decline significantly only after extensive amyloid deposi-
tion [123], while cortical GLUT1 expression progressively 
decreases with aging in Tg2576 mice [124]. However, 
However, these studies did not specify the exact cel-
lular contributors (e.g., neurons, microglia, or astro-
cytes) to the observed decrease in GLUT1 expression. 
While impaired glucose metabolism in neurons is well 
recognized as a driver of neurodegeneration [125, 126], 
the specific changes in microglial glucose metabolism 
and their contributions to AD progression remain less 
understood. Recent studies integrating 2-deoxy-2-[18F]
fluoro-D-glucose positron emission tomography (FDG-
PET) with single-cell RNA sequencing (scRNA-seq) have 
revealed a strong association between increased glucose 
uptake and metabolic reprogramming of microglia in the 
hippocampus of 5XFAD mice [127]. scRNA-seq analy-
sis has identified distinct microglial subpopulations with 
unique glucose metabolism signatures, including a subset 
characterized by elevated GLUT1 expression, enhanced 
glycolysis, and reduced OXPHOS, which became more 
prevalent as AD pathology progressed [127]. These find-
ings suggest that GLUT1 upregulation in microglia may 
serve as an adaptive response to sustain energy produc-
tion in response to the disease. As AD progresses, glu-
cose metabolism within the CNS becomes increasingly 
heterogeneous across different cell types [128–131]. 
Microglia exhibit diverse metabolic profiles depending 
on their activation states, which may also correlate with 
their proximity to amyloid plaques [94, 132]. A separate 

FDG-PET study using an AD mouse model demon-
strated that microglia exhibit higher glucose uptake than 
neurons and astrocytes [133]. Additionally, research uti-
lizing TSPO-PET (18-kDa translocator protein PET) has 
established a positive correlation between microglial 
activation and glucose uptake in both AD and tauopa-
thy mouse models, as well as in human patients [133]. 
These findings emphasize the importance of distinguish-
ing between impaired neuronal glucose metabolism and 
microglial metabolic adaptation to accurately determine 
their respective contributions to AD pathology. Immune 
cells, including microglia, rely on glycolysis and mito-
chondrial metabolism to meet their energy and biosyn-
thetic demands [134, 135].

Glycogen, a branched polymer of glucose, serves as a 
cellular energy reserve and a source of biosynthetic pre-
cursors [136]. While glycogen is primarily stored in the 
liver and muscles to provide energy when needed [137, 
138], its role in the CNS has remained underexplored 
due to technical limitations in measuring glycogen levels 
[139]. This knowledge gap is particularly pronounced in 
microglia. However, recent technological advancements 
have enabled researchers to uncover novel insights into 
microglial glycogen metabolism [139].

Prostaglandin E2 (PGE2) is a bioactive lipid mediator 
that exerts its effects through four distinct G protein-
coupled receptors (EP1–EP4), among which EP2 plays 
a critical role in inflammatory signaling and metabolic 
regulation [140, 141]. Recent studies in aged microglia 
have shown that activation of the PGE2-EP2 signaling 
pathway promotes glycogen synthesis, leading to glucose 
sequestration and reduced metabolic flux through glyco-
lysis and mitochondrial respiration [142]. Interestingly, 
inhibition of the PGE2-EP2 pathway has been found to 
decrease glycogen accumulation, enhance glycolysis, and 
restore spatial memory and inflammatory responses in 
aged mice [142]. Glycogen accumulation has also been 
identified in specific microglial subpopulations [143, 
144]. Among these, dark microglia (DM) represent a 
newly identified phenotype enriched under conditions of 
chronic stress, aging, and AD pathology [143, 145]. First 
described by Bisht et  al., dark microglia exhibit ultras-
tructural features indicative of oxidative stress, including 
dense cytoplasm, nucleoplasmic condensation, dilated 
endoplasmic reticulum (ER), and mitochondrial abnor-
malities [143, 146]. Further studies by St-Pierre et  al. 
identified glycogen granules as a unique feature distin-
guishing dark microglia from other microglial pheno-
types [144]. Notably, glycogen-rich dark microglia are 
predominantly located near Aβ plaques and dystrophic 
neurites in the hippocampus of APP-PS1 mice [144]. The 
presence of glycogen granules in these microglia suggests 
a potential metabolic shift toward glycolysis in response 
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to Aβ plaque-induced stress. However, under pathologi-
cal conditions, glycogen accumulation may also reflect 
impaired glucose metabolism, possibly due to decreased 
glucose availability. This metabolic dysfunction may com-
promise the microglial response to stressors such as Aβ, 
ultimately influencing AD progression. Given the emerg-
ing role of glycogen metabolism in microglial function, 
further research is warranted to elucidate its relationship 
with glucose metabolism and its broader impact on AD 
pathogenesis.

A comprehensive understanding of glucose metabolism 
in AD requires an in-depth investigation of microglial 
metabolic profiles. However, current single-cell RNA 
sequencing (scRNA-seq) data are limited, as they are typ-
ically derived from a small number of mice and restricted 
to specific brain regions. This constraint hampers the 
ability to construct a holistic view of glucose metabolism 
across the entire brain in AD. To overcome this limita-
tion, future scRNA-seq analyses should incorporate a 
broader dataset that accounts for key factors such as the 
spatial heterogeneity of microglia [147] and their prox-
imity to amyloid plaques. These refinements will provide 
a more precise characterization of microglial glucose 
metabolism in AD and offer deeper insights into how 
metabolic alterations contribute to disease progression.

Lipid metabolism
In addition to glucose, lipids serve as another crucial 
energy source influencing microglial activation. These 
lipids play essential roles in regulating membrane struc-
ture and cellular signaling within the brain. Microglia, 
equipped with diverse receptors, monitor the brain’s 
microenvironment, with lipid rafts—sphingolipid- and 
cholesterol-rich microdomains in the plasma mem-
brane—playing a significant role in processes such as 
receptor trafficking and signaling cascades [148, 149]. 
On the other hand, intracellular lipids, including those 
in mitochondria and signaling molecules, can modu-
late immune responses by affecting metabolic pathways 
[150]. Increasing attention is being directed toward the 
role of microglia-mediated lipid and lipoprotein metab-
olism in the brain and its implications for systemic and 
neuroinflammatory diseases [62]. The rapid growth of 
scRNA-seq studies has revealed a wide range of micro-
glial phenotypes, far beyond the classical M1/M2 types 
[151–153]. These studies have highlighted changes in 
gene expression related to lipid and lipoprotein metabo-
lism and their association with various microglial phe-
notypes [154]. Moreover, accumulating genetic and 
biological evidence underscores the significant role of 
lipid metabolism in AD. Over a century ago, Alois Alz-
heimer described ’lipid granules’ in AD brains [155], rais-
ing early suspicions about the potential role of disrupted 

lipid metabolism in the disease. These suspicions have 
since been reinforced by genome-wide association stud-
ies (GWAS), which have identified several lipid-related 
genes, including APOE, APOJ, and ABCA7, as strong AD 
risk factors [13, 15, 156]. Recent comprehensive single-
cell transcriptomic analyses, including scRNA-seq and 
single-nucleus RNA sequencing (snRNA-seq), have fur-
ther defined the transcriptional identities of microglia 
with disease-specific states [157–160].

For instance, Keren-Shaul et  al. identified a unique 
population of microglia, termed disease-associated 
microglia (DAM), in AD mouse model [157]. Key genes 
upregulated in DAM, such as APOE, TREM2, LPL, and 
CST7 are involved in lipid metabolism and phagocytosis 
[157, 161–163]. This transcriptional profile suggests that, 
in the later stages of AD, microglia may shift toward lipid 
metabolism as a primary energy source for Aβ clearance. 
However, findings from DAM in mouse models may not 
fully capture the complexity of microglial states in human 
AD [164–166]. Recent snRNA-seq analyses by Sun et al. 
have expanded this understanding by revealing a greater 
diversity of microglial transcriptional states in human 
AD brains compared to the DAM signatures observed in 
AD mouse models [160]. These microglial substates were 
functionally distinct, characterized by features such as 
ribosome biogenesis, inflammatory responses, and lipid 
processing. A distinct microglial state linked to choles-
terol and lipid homeostasis—characterized by genes such 
as PPARG​, APOE, ABCA1, and TREM2—was signifi-
cantly enriched in AD [160]. This microglial state showed 
a strong correlation with amyloid plaques, tau tangles, 
Braak staging, and cognitive decline. Furthermore, 
state- and stage-specific differential analyses revealed 
that inflammatory responses precede lipid regulation in 
microglia during disease progression [160]. These find-
ings underscore the strong link between inflammation 
and lipid metabolism, emphasizing the critical role of 
microglia in AD pathogenesis.

Marschallinger et  al. discovered a novel microglia 
subpopulation, lipid-droplet-accumulating microglia 
(LDAM) in the aging brain [65]. These microglia exhibit 
defective phagocytosis, excessive reactive oxygen spe-
cies (ROS) production, and elevated pro-inflammatory 
cytokine secretion [65, 167]. LDAM exhibit a distinct 
transcriptome signature, setting them apart from previ-
ously described microglia states observed in aging and 
neurodegeneration, such as DAM and neurodegen-
erative microglia (MGnD). LDAM were also identified 
near amyloid plaques in 5XFAD mice[66]and in chima-
eric human–mouse AD models [158]. Similar cells have 
been observed in hippocampal tissue from AD patients 
[66], suggesting that LDAM may play a significant role 
in the progression of AD and other neurodegenerative 
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disorders. These findings highlight how lipid dysregula-
tion in microglia may contribute to neurodegeneration.

Lipid metabolism, encompassing processes such as 
lipid uptake, lipolysis, fatty acid beta oxidation (FAO), 
lipogenesis, and fatty acid synthesis, provides essential 
energy for microglial activation [62]. Microglia express a 
wide range of genes related to lipid metabolism, includ-
ing those involved in FAO [29, 168], a process crucial for 
their metabolic function. During FAO, fatty acids (FAs) 
are liberated from lipid droplets (LDs) and transported 
into mitochondria, where they fuel OXPHOS, generating 
the energy needed for cellular activities [169, 170]. This 
pathway becomes particularly important when glucose 
availability is limited, as demonstrated in studies on mac-
rophages, which share many functional similarities with 
microglia [171, 172]. In energy-stressed environments, 
FAs serve as a vital alternative energy source, enabling 
microglia to maintain their essential functions in the 
CNS [173, 174]. Changes in FAO can affect microglial 
energy production and phenotype, potentially influenc-
ing their response to AD pathology [175, 176].

Lipoprotein lipase (LPL), a DAM-associated gene and 
an identified AD risk factor [157, 177], plays a crucial role 
in lipid metabolism in microglia, regulating lipid droplet 
accumulation and FAO [178, 179]. Loss of LPL in micro-
glia leads to increased pro-inflammatory lipid profiles, 
impaired lipid uptake, and reduced FAO [178], contrib-
uting to neuroinflammation and microglial dysfunction. 
In AD, this impaired LPL function disrupts lipid home-
ostasis, facilitating the accumulation of neurofibrillary 
tangles and amyloid plaques [62, 177, 180]. Notably, 
in response to Aβ exposure, microglia upregulate LPL 
expression, which enhances their phagocytosis of Aβ [75, 
181]. Additionally, in an AD mouse model, pharmaco-
logical inhibition of hexokinase 2 (HK2), a key glycolytic 
enzyme, increased LPL expression, which in turn regu-
lated lipid metabolism and was associated with reduced 
amyloid load and improved cognitive function [75]. Simi-
larly, ABCA7, another LOAD risk gene involved in lipid 
transport, is critical for maintaining phospholipid and 
cholesterol homeostasis [182, 183]. Genetic studies have 
linked ABCA7 loss-of-function variants to an increased 
risk of AD [184–187], yet the precise mechanisms under-
lying this association remain incompletely understood. 
Recent evidence suggests that ABCA7 is involved in the 
crosstalk between lipid metabolism and neuroinflam-
mation. Metabolomic network analysis identified glycer-
ophospholipid metabolism, linoleic acid metabolism, and 
α-linolenic acid metabolism as key pathways affected by 
ABCA7 haploinsufficiency following acute inflammatory 
stimulation [188]. This was accompanied by increased 
levels of eicosapentaenoic acid, oleic acid, and palmitic 
acid, further supporting ABCA7’s role in coordinating 

lipid metabolism and immune responses [189]. In addi-
tion, a metabolome-wide association study (MWAS) has 
identified a link between ABCA7 and peripheral blood 
lactosylceramide (LacCers) levels, suggesting a potential 
role in sphingolipid metabolism [189]. Further analysis in 
ABCA7 knockout mice revealed decreased LacCer lev-
els in the brain, while overall sphingolipids, ceramides, 
and hexosylceramides were increased, indicating that 
ABCA7 may be required for proper processing of sphin-
golipids into LacCer species [189]. These findings sug-
gest that ABCA7 deficiency alters ceramide metabolism, 
potentially contributing to microglial lipid imbalance and 
neuroinflammation.

ABCA7-deficient microglia exhibit reduced Aβ phago-
cytic clearance, which aligns with the increased Aβ accu-
mulation observed in the brains of ABCA7-deficient mice 
[190, 191]. Additionally, the rare ABCA7 p.A696S vari-
ant has been associated with exacerbated amyloid bur-
den and plaque-associated neuritic dystrophy in 5xFAD 
mice, along with reduced amyloid-induced microglial 
activation and altered brain lipid profiles, including 
increased lysophosphatidylethanolamine (LysoPE) levels 
[192]. Transcriptomic analysis of ABCA7-A696S knock-
in 5XFAD mice further revealed increased expression of 
DAM genes including APOE, TREM2, and AXL [192]. 
These findings suggest that ABCA7 dysfunction may dis-
rupt microglial lipid metabolism and immune regulation, 
thereby contributing to AD pathogenesis by impairing 
Aβ clearance and promoting neuroinflammation.

Microglia accumulate LDs when exposed to Aβ, par-
ticularly near amyloid plaques in AD patients and mouse 
models [66, 193]. This lipid accumulation impairs micro-
glial Aβ clearance [66, 193]. Lipidomic analyses have 
shown a significant decrease in free fatty acids (FFAs) 
and an increase in triacylglycerols (TAGs) as the key 
metabolic transition underlying LD formation in micro-
glia exposed to Aβ [66]. This shift in lipid composition is 
mediated by DGAT2, which converts FFA to TAG [194, 
195]. Increased levels of DGAT2 are found in micro-
glia from AD brains [66]. Interestingly, the inhibition of 
DGAT2 has been shown to improve microglial uptake of 
Aβ, suggesting a potential therapeutic strategy for reduc-
ing amyloid burden in AD [66]. Shippy et  al. recently 
conducted a comprehensive analysis of lipid metabolism-
related gene expression changes in microglia under AD 
and neuroinflammatory conditions [176]. Their microar-
ray analysis of 5XFAD mice revealed numerous differen-
tially expressed genes (DEGs) related to lipid metabolism 
compared to wild-type mice. Functional enrichment 
and network analyses identified several biological pro-
cesses and molecular functions associated with these 
DEGs, including cholesterol homeostasis (e.g., HMGCR, 
ANGPTL3, APOE, INSIG1, LPL), fatty acid metabolic/
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biosynthetic process (e.g., ANGPTL3, ACADS, ACACA, 
FABP3), and triglyceride metabolism (e.g., HMGCR, 
ANGPTL3, APOC4, APOE, LPL) [176]. Furthermore, 
recent study has demonstrated that reducing LD accu-
mulation in microglia restores Aβ phagocytosis and leads 
to a reduction in amyloid plaque deposition, highlight-
ing the therapeutic potential of targeting microglial lipid 
metabolism in AD [193].

Building on these findings, recent studies have further 
elucidated the molecular mechanisms that link micro-
glial lipid metabolism to AD pathology, identifying key 
signaling pathways involved in this process. Notably, two 
recent studies have highlighted the roles of the integrated 
stress response (ISR) [196] and REV-ERBα signaling [197] 
in mediating microglial lipid dysregulation and dysfunc-
tion. ISR activation in microglia, observed in both AD 
patients and mouse models, promotes the secretion of 
toxic lipids and impairs neuronal survival. This response 
exacerbates synapse loss and tau pathology, positioning 
ISR-activated microglia as a critical neurodegenerative 
phenotype [196]. Similarly, REV-ERBα, known for regu-
lating lipid metabolism in the periphery, also modulates 
lipid metabolism and inflammatory responses in micro-
glia within the CNS. Microglial REV-ERBα deletion leads 
to excessive lipid droplet accumulation, impaired tau 
clearance, and exacerbated neuroinflammation in tauop-
athy model [197]. This effect was observed specifically 
in male mice, highlighting the potential sex-dependent 
role of REV-ERBα in microglial lipid metabolism and tau 
pathology [197]. Together, these recent findings empha-
size how specific signaling pathways mediate the link 
between lipid metabolism dysregulation and microglial 
dysfunction, offering potential avenues for therapeutic 
intervention in AD.

Emerging evidence suggests that, beyond the role of 
lipid metabolism in microglial dysfunction, pathogenic 
tau directly disrupts lipid metabolism, further exacer-
bating neurodegeneration. Olesova et  al. demonstrated 
significant alterations in mitochondrial-associated lipid 
metabolism during various stages of tau pathology in a 
transgenic rat model (SHR-24) expressing human trun-
cated tau protein [47]. Their analysis revealed that tau 
accumulation disrupts metabolic pathways, including 
FAO, TCA cycle, and creatine metabolism, contributing 
to mitochondrial dysfunction. In  vitro studies further 
showed that truncated tau increases LD formation in 
microglial mitochondria, reducing ATP production and 
exacerbating oxidative stress [47]. Similarly, in PS19 mice 
expressing human P301S mutant tau, microglia enriched 
in LDs displayed elevated oxidative stress and an inflam-
matory phenotype, impairing tau clearance and driv-
ing neurodegeneration [198]. These findings highlight 
how lipid dysregulation and LD accumulation disrupt 

mitochondrial function and microglial activity, creat-
ing a vicious cycle that amplifies both amyloid and tau 
pathologies.

Additionally, tau-induced changes in cellular mem-
brane fluidity and lipid order further disrupt microglial 
function [47]. Alterations in lipid composition can sig-
nificantly affect receptor expression and receptor-medi-
ated signaling pathways, modulating cell polarization 
and activity [61, 149, 199, 200]. In microglia, tau has 
been shown to decrease membrane lipid order, shifting 
it toward a more liquid phase, potentially contributing to 
energy imbalance and impaired microglial responses [47]. 
These findings indicate that tau pathology may disrupt 
lipid metabolism and energy homeostasis in microglia, 
potentially contributing to neurodegenerative processes.

A recent study by Li et al. identified a potential mecha-
nism underlying excessive LD accumulation in micro-
glia in tauopathy models [198]. The researchers found 
that tauopathy neurons release excess unsaturated lipids, 
which are then taken up by nearby microglia, leading to 
significant LD accumulation in these cells [198]. Notably, 
LD accumulation in microglia appears to be associated 
with the exacerbation of tau pathology [201]. Impor-
tantly, the extent of LD buildup in microglia has been 
found to correlate with hippocampal neuron loss [198], 
suggesting a potential association between lipid dysregu-
lation and neurodegeneration in tauopathies.

Amino acids metabolism
Microglia demonstrate remarkable metabolic flexibility 
in their energy acquisition. When glucose availability is 
limited, they can efficiently shift their metabolism to uti-
lize amino acids as an alternative fuel, highlighting their 
bioenergetic adaptability [30]. Beyond their role in pro-
tein synthesis, amino acids can be catabolized through 
various pathways to generate ATP, providing an alter-
native energy source when needed [202]. For instance, 
glutamine act as a crucial bioenergetic substrate for 
microglia under hypoglycemic conditions [30]. Glu-
tamine, the most abundant free amino acid in the brain, 
is converted into glutamate by glutaminase and then fur-
ther transformed into α-ketoglutarate by glutamate dehy-
drogenase, enabling it to enter the TCA cycle to support 
mitochondrial metabolism for the production of energy 
[203]. However, imbalances in glutamine metabolism 
during microglial inflammatory activation can poten-
tially lead to detrimental outcomes [204–206]. Glutamine 
metabolism, particularly through the enzyme glutami-
nase (GLS), appears to regulate microglial activation and 
pro-inflammatory responses [207]. Abnormal elevation 
of the GLS isoform glutaminase C (GAC), the rate-limit-
ing enzyme in glutaminolysis, has been observed in acti-
vated microglia and early AD mouse brain tissues [208]. 
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Gao et al. demonstrated that GAC upregulation in micro-
glia enhances the release of pro-exosome, potentially 
exacerbating neuroinflammation in AD [208]. Therefore, 
dysregulation of glutamine utilization may contribute to 
chronic neuroinflammation and microglial dysfunction 
in AD pathogenesis.

The APOE4 allele is well known as the greatest genetic 
risk factor for LOAD. Microglia expressing APOE4 
exhibit exaggerated immune responses and a diminished 
capacity to clear Aβ compared to microglia express-
ing APOE2 or APOE3 [209, 210]. These functional dif-
ferences underscore the impact of APOE genotype 
on microglial behavior in the context of AD. Notably, 
a significant increase in GLS activity was observed in 
hippocampal microglia from APOE4 knock-in mice com-
pared to age-matched wild-type controls [69]. Chronic 
administration of JHU-083, a glutaminase antagonist, 
improved cognition and attenuated the rise of GLS activ-
ity in APOE4 knock-in mice [69]. Collectively, these 
studies indicate that while glutamine is a vital meta-
bolic substrate for microglia, its excessive availability or 
altered metabolism during pro-inflammatory responses 
can potentially contribute to neuroinflammation and 
neurotoxicity.

Alongside glutamine, other amino acids, including 
tryptophan and arginine, also play crucial roles in micro-
glial metabolism and immune responses [211, 212]. Tryp-
tophan serves as a precursor for neuroactive compounds 
and influences microglial function, contributing to either 
neurotoxic or neuroprotective effects [213]. The majority 
of tryptophan is metabolized via the kynurenine path-
way, and alterations in this metabolic pathway have been 
linked to various human diseases, including psychiatric 
disorders, autoimmunity, neurodegeneration, and AD 
[51, 214–217]. The rate-limiting enzyme in the kynure-
nine pathway, indoleamine 2,3-dioxygenase (IDO), is 
upregulated in the AD brain and promotes the conver-
sion of tryptophan into quinolinic acid (QA) [215, 218]. 
This pathway is particularly active in microglia exposed 
to Aβ, leading to an increase in QA production. Elevated 
IDO levels in AD are associated with neurofibrillary tan-
gles and Aβ plaques, suggesting a potential role of tryp-
tophan metabolism in AD pathology [215, 218, 219]. 
Additionally, QA, a key metabolite of tryptophan degra-
dation, has been implicated in neurotoxicity in various 
inflammatory brain disorders, including AD [215, 220, 
221]. During neuroinflammation, microglial activation 
promotes the shift in kynurenine metabolism towards 
increased QA production [222, 223]. QA is secreted from 
microglia and acts as an NMDA receptor agonist, induc-
ing neurotoxicity [224]. Furthermore, studies have shown 
that QA treatment induces tau phosphorylation in neu-
rons [225].

Arginine is metabolized through two competing path-
ways: one via nitric oxide synthase (iNOS) to generate 
nitric oxide (NO) and citrulline, and the other via argin-
ase to produce urea and ornithine [226]. iNOS is a marker 
of the pro-inflammatory M1 microglial phenotype, while 
arginase-1 is associated with the anti-inflammatory M2 
phenotype [227–229]. NO, synthesized through iNOS, 
inhibits Complex IV of the mitochondrial electron 
transport chain, disrupting mitochondrial function and 
shifting microglial metabolism toward glycolysis [230]. 
NO produced by iNOS, upregulated in microglia upon 
Aβ exposure, has been shown to induce neurotoxicity 
[231–233]. Independent studies also report increased tau 
phosphorylation in neurons exposed to NO [234], sug-
gesting that NO produced via iNOS-mediated arginine 
metabolism contributes to AD progression by driving 
inflammation and potentially influencing tau phospho-
rylation in neurons. Conversely, M2 microglia express 
arginase-1, which catalyzes the conversion of arginine 
into polyamine precursors, promoting anti-inflammatory 
processes [228]. In the hippocampal region of APP-PS1 
mice, Arginase-1 + microglia, which contain more Aβ 
than iNOS + microglia, were upregulated and involved in 
Aβ clearance [235].

In summary, amino acid metabolism plays a pivotal 
role in regulating microglial functional and phenotypic 
transitions in both in vivo and in vitro contexts. Among 
key metabolic pathways, tryptophan metabolism through 
the kynurenine pathway, mediated by IDO, and arginine 
metabolism via iNOS and arginase-1, serve as crucial 
links between microglial activation and AD pathology. 
However, the precise molecular mechanisms that con-
nect these metabolic reprogramming events to neuroin-
flammation and Aβ/tau pathology remain incompletely 
understood. Furthermore, while glutamine metabolism 
has been extensively investigated, the roles of other 
amino acids, such as tryptophan and arginine, remain 
relatively underexplored, highlighting the need for fur-
ther research to fully elucidate their contributions to AD 
pathogenesis.

Molecular mediators of microglial immunometabolism 
in AD
TREM2
TREM2 is a membrane protein predominantly expressed 
on microglia in the CNS [35, 161, 236], playing critical 
roles in the wide-ranging microglial functions, includ-
ing proliferation, differentiation, phagocytosis, metabo-
lism, survival, lipid handling and inflammatory responses 
[38, 40, 237–240]. Given its essential role in microglial 
function and immune homeostasis, genetic variants of 
TREM2 that lead to loss of function are strongly associ-
ated with an increased risk of developing AD [241–243]. 



Page 14 of 29Jung et al. Molecular Neurodegeneration           (2025) 20:37 

Recent studies emphasize that TREM2, which is upreg-
ulated in DAM [154, 157], facilitates the transition of 
microglia to the DAM phenotype [157, 244, 245] while 
modulating metabolism to support microglial activa-
tion and Aβ clearance [35, 39, 157, 245–247]. Research 
using knockout models has demonstrated that TREM2 
activates a metabolic program involving glycolysis, the 
PPP, and the TCA cycle to support phagocytosis [35]. 
Glucose uptake, the critical energy source for this met-
abolic pathway, depends on TREM2 and varies with 
microglial activation status [133]. Microglia exhibit dis-
tinct transcriptomic and metabolic profiles depending on 
their level of TREM2 expression, with these differences 
becoming more pronounced near amyloid plaques [248]. 
TREM2 deficiency in microglia from 5XFAD mice leads 
to a downregulation of glucose transporters and glyco-
lytic enzymes. This energy deficit, induced by TREM2 
deficiency, activates AMPK and impairs mTOR signal-
ing, resulting in mitochondrial damage and increased 
autophagy [35]. These autophagy-related changes align 
with the multi-omics analyses in patients with amyloid 
pathology and AD-like brain organoid models [249], sug-
gesting that alterations in autophagy-related pathways, 
which are central regulators of cellular metabolism, may 
be key contributors to AD pathogenesis.

Similar to TREM2-deficient microglia, microglia 
expressing the R47H variant of TREM2 exhibit metabolic 
impairments, including reduced mitochondrial oxidative 
phosphorylation and an inability to undergo glycolytic 
reprogramming. These metabolic deficits compromise 
energy production, phagocytosis, and adaptive responses 
to inflammation, impairing their ability to clear Aβ42 
and further emphasizing the critical role of TREM2 in 
maintaining microglial metabolic fitness [250]. Likewise, 
alterations in microglial metabolic pathways have been 
discovered in the brain of AD patients carrying the R47H 
variant [251]. Piers et al. found that the observed deficits 
in microglial metabolic regulation and associated func-
tions in TREM2 variants are caused by dysregulation of 
the PPARγ/p38MAPK signaling pathway [250]. They 
showed that by activating these pathways, the metabolic 
deficits of microglia can be improved, leading to the res-
toration of Aβ phagocytosis.

TREM2 also plays a crucial role in regulating micro-
glial cholesterol metabolism, particularly during chronic 
phagocytic challenges. In microglia lacking the TREM2, 
there is a disruption in the regulation of genes involved 
in lipid metabolism, resulting in an accumulation of 
cholesterol ester (CE) and impaired transport of cho-
lesterol within the brain [239, 252]. This indicates that 
TREM2 is a vital component in maintaining optimal lipid 
homeostasis in microglia. Knockdown of TREM2 results 
in increased lipid synthesis and decreased cholesterol 

clearance and lipid hydrolysis, further impacting micro-
glial phenotypes. The critical role of TREM2 in regulat-
ing cholesterol transport and metabolism in microglia, 
largely identified through knockout studies, was fur-
ther corroborated by recent research demonstrating an 
inverse relationship between TREM2 expression and free 
cholesterol levels [248]. Microglia expressing high levels 
of TREM2 showed significantly lower levels of free cho-
lesterol and palmitoylcarnitine compared to their low 
TREM2 expressing microglia [248], suggesting high lipid 
catabolism and cholesterol efflux in TREM2-high micro-
glia. Overall, elevated TREM2 expression in microglia 
correlates with enhanced energetic and metabolic capaci-
ties, as well as improved cholesterol management. This 
suggests a pivotal role for TREM2 in optimizing micro-
glial function through metabolic regulation.

APOE
Given that TREM2 is a key regulator of microglial lipid 
metabolism, APOE, another major player in lipid han-
dling, also significantly influences microglial immu-
nometabolism. Upregulation of microglial APOE is a 
significant feature observed in both AD patients [164, 
253] and AD mouse brains [157, 253–255]. A compre-
hensive multi-omics study revealed that APOE4 sig-
nificantly alters microglial metabolism and immune 
responses [256]. APOE4 microglia, isolated from APOE4 
KI mice, exhibit increased aerobic glycolysis with ele-
vated HIF-1α expression and a disrupted TCA cycle 
compared with APOE3 microglia [70]. These microglia 
show increased APOE expression and upregulation of 
genes involved in glucose metabolism, lipid processing, 
and pro-inflammatory cytokines [70]. These findings are 
partially consistent with another work that reported that 
APOE4 significantly impairs the metabolic function of 
human iPSC-derived microglia, inhibiting both glycolysis 
and OXPHOS, which in turn hinders their phagocytosis, 
migration, and overall metabolic activity, while simulta-
neously exacerbating cytokine secretion [257, 258]. Fur-
thermore, APOE4 5XFAD mice exhibited enriched genes 
associated with the DAM/MGnD signature in the cortex 
and hippocampus compared to APOE3 5XFAD mice, 
indicating an induced microglial transcriptomic switch 
in response to amyloid pathology [70]. In addition to 
its effects on glucose metabolism, APOE4 also disrupts 
lipid homeostasis in microglia, leading to lipid droplet 
accumulation and impaired lipid processing, particularly 
in the context of amyloid pathology [256]. Interestingly, 
deletion of APOE4 in microglia restored the MGnD 
response to chronic neurodegeneration and promoted 
neuroprotection by alleviating tau and amyloid pathology 
[256].
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In addition to DAM/MGnD microglia, a recent study 
identified a novel population of microglia, termed ter-
minally inflammatory microglia (TIM) [259]. TIM, char-
acterized by the expression of inflammatory signals and 
stress markers, increases with age and APOE4 presence, 
showing reduced cellular energetics (including depleted 
citric acid cycle, glycolysis, and sugar metabolism path-
ways), features of ROS detoxification, and altered amino 
acid metabolism [259]. An analogous population has 
been identified in the human AD brain. TIM exhibits 
impaired Aβ clearance and altered cell–cell communica-
tion during aducanumab treatment [259], suggesting that 
it may contribute to AD risk and pathology, particularly 
in APOE4 carriers and the elderly, making it a potential 
therapeutic target.

The brain’s primary lipid transporter, APOE, has also 
been demonstrated to exert isoform-specific effects on 
lipid and cholesterol metabolism. Microglia derived from 
human induced pluripotent stem cells (iPSCs) expressing 
APOE4 were found to contain more LDs [73], supporting 
recent findings that APOE4 in microglia influences lipid 
metabolism and potentially contributes to AD pathol-
ogy. In this recent study by Haney et  al. snRNA-seq 
analysis of AD brain tissue revealed a population of LD-
enriched microglia characterized by high ACSL1 expres-
sion, an enzyme involved in LD formation [260]. This 
ACSL1-positive LDAM population was most abundant 
in patients with the APOE4/4 genotype. In iPSC-derived 
microglia, Aβ upregulated ACSL1 expression, result-
ing in triglyceride synthesis and LD accumulation in an 
APOE-dependent manner. Notably, secreted factors from 
these LD-laden microglia led to tau phosphorylation and 
neurotoxicity in an APOE-dependent manner. Recently, 
the impact of APOE isoform-dependent microglial 
changes on AD pathogenesis has been investigated using 
a human microglia xenotransplantation model [261]. In 
this study, ATAC-seq and RNA-seq were used to distin-
guish the effects of various APOE isoforms on microglia 
in AD from epigenomic and transcriptomic perspec-
tives. Significant transcriptomic and epigenetic differ-
ences were found in microglia depending on the APOE 
isoform. APOE4 was shown to potentially increase AD 
risk by upregulating genes related to lipid accumulation 
and impairing microglial proliferation, migration, and 
immune responses [261].

TREM2‑APOE interaction
TREM2 and APOE are pivotal in AD pathogenesis due to 
their interconnected roles in lipid metabolism, microglial 
activation, and Aβ clearance [262, 263]. While TREM2 
facilitates phagocytosis by recognizing lipid ligands [161, 
264], APOE transports lipids and cholesterol, interact-
ing with microglial receptors involved in lipoprotein 

metabolism [163]. TREM2 and APOE collaboratively 
regulate microglial responses to Aβ pathology [159, 262, 
263], with TREM2 promoting phagocytosis and APOE 
facilitating lipid handling. This activation drives the 
MGnD transition by promoting metabolic and inflamma-
tory reprogramming in microglia, a process accompanied 
by TGF-β1 suppression [159]. Transcriptomic analyses 
indicate that TREM2-APOE signaling promotes MGnD-
like microglia while downregulating homeostatic genes 
such as P2ry12, Tmem119, and Tgfbr1, suggesting that 
TGF-β1 suppression may be necessary for MGnD activa-
tion, yet its complete loss could impair microglial home-
ostasis and cognitive function [265].

Recent findings highlight that APOE4 disrupts this 
balance, leading to excessive lipid droplet accumula-
tion in microglia, particularly in APP-PS1:APOE4 KI 
models [256]. This metabolic dysregulation mirrors that 
of TREM2-deficient microglia, where disrupted lipid 
metabolism and TGF-β1 signaling jointly promote a 
pro-inflammatory state [266]. TREM2 deficiency dis-
rupts cholesterol homeostasis, leading to cholesteryl 
ester accumulation and lipid droplet formation, which 
shifts microglia toward a pro-inflammatory pheno-
type [266]. Notably, blocking APOE4-TGF-β1 signaling 
restores MGnD-like phenotypes and enhances Aβ clear-
ance in AD models, highlighting the dual role of TGF-β1 
in microglial function—maintaining homeostasis under 
physiological conditions but potentially impeding MGnD 
activation and Aβ clearance in AD pathology—thereby 
underscoring its complex interplay with the TREM2-
APOE axis.

Given its crucial role in regulating lipid metabolism 
and immune function, TREM2 acts as a key receptor for 
APOE [263, 267, 268], integrating metabolic and inflam-
matory responses to maintain microglial function in AD 
pathology. This interaction is essential for coordinating 
microglial responses to Aβ pathology, further emphasiz-
ing its central role in AD progression [12, 269]. Indeed, 
transcriptomic studies in 5XFAD mice have identified 
TREM2 and APOE as two of the most upregulated genes 
in microglia actively engaged in amyloid phagocytosis, 
underscoring their importance in microglial activation 
and function in AD pathology [255, 270].

Importantly, TREM2 and APOE are critical for the 
formation of a microglial barrier surrounding plaques, 
a structural response that limits amyloid spread and 
associated toxicity. In the absence of either gene, this 
protective microglial clustering around Aβ plaques is 
significantly impaired, highlighting their cooperative 
role in modulating plaque-associated microglial activity 
[271]. Microglia expressing APOE4 exhibit a reduced 
ability to respond to Aβ compared to those express-
ing APOE3. This deficit is further exacerbated in the 
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absence of TREM2, leading to a significantly dimin-
ished capacity for Aβ phagocytosis [272]. In AD, the 
TREM2-APOE axis plays a crucial role in microglial 
activation and Aβ clearance, a function that extends 
to other neurodegenerative diseases where impaired 
microglial responses contribute to pathology [159]. A 
recent study has revealed that externalized phosphati-
dylserine (ePtdSer), generated from nutrient-deprived 
neurons surrounding Aβ plaques, serves as the driv-
ing force behind TREM2-dependent Aβ phagocytosis 
in microglia [273]. Intriguingly, microglia expressing 
APOE4 demonstrated reduced TREM2-dependent Aβ 
phagocytosis via ePtdSer compared to those expressing 
APOE3 [273].

While the role of TREM2-APOE interactions in Aβ 
pathology is relatively well-characterized, their contribu-
tion to tau pathology remains less understood, reflecting 
the broader complexity of AD progression. Recent evi-
dence suggests that APOE4 serves as the primary driver 
of dysfunction in tau-related pathology [274]. Interest-
ingly, the impact of TREM2 deficiency on tau pathology is 
dependent on APOE isoform, revealing a more nuanced 
interplay between these two factors in AD. In TREM2-
deficient P301S tauopathy mice expressing murine 
APOE, neuroinflammation is reduced, and brain atrophy 
is mitigated, suggesting a neuroprotective role of TREM2 
deficiency [275]. However, in P301S mice express-
ing human APOE4, TREM2 deficiency exacerbates tau 
pathology and neurodegeneration, despite a reduction in 
TREM2-dependent microgliosis [274]. Notably, human 
APOE4 promotes abnormal lipid accumulation in micro-
glial lysosomes, independent of TREM2, further reinforc-
ing its central role in driving tau-related pathology. These 
findings highlight that the interplay between TREM2 and 
APOE extends beyond ligand binding, actively shaping 
microglial responses to neurodegeneration. Given the 
therapeutic interest in TREM2 modulation, isoform-spe-
cific investigations into APOE-TREM2 interactions will 
be crucial for refining treatment strategies. Furthermore, 
addressing the interplay of these mechanisms in both 
amyloid and tau pathologies will be essential for develop-
ing comprehensive and effective therapeutic approaches.

APOE-TREM2 interactions are modulated by APOE 
isoform and lipidation status [263, 268, 276, 277], which 
may in turn affect microglial function in AD pathology. 
The degree of APOE lipidation differs among isoforms, 
with APOE2 exhibiting the highest level and APOE4 
showing the lowest [278–281]. TREM2 preferentially 
binds to non-lipidated APOE, and APOE4 generally dis-
plays a higher binding affinity than APOE2 [276, 277], 
possibly due to its lower lipidation level. Differences 
in APOE lipidation across isoforms influence not only 
TREM2 interactions but also key microglial functions, 

such as Aβ clearance, lipid homeostasis, and inflamma-
tory responses [282].

A recent study by Guo et  al. reported that lipidated 
APOE2 exhibits reduced LDLR binding, which appears 
to be a protective mechanism in AD by limiting excessive 
toxic lipid uptake and preventing microglial overactiva-
tion [283]. These findings suggest that APOE lipidation 
may play a key role in modulating interactions with vari-
ous APOE receptors, which could be closely linked to the 
progression of AD pathology.

Phospholipid composition also varies in an APOE iso-
form-specific manner, contributing to differences in lipi-
dation [272, 284] and microglial responses to Aβ [272]. 
APOE3 lipoproteins, compared to APOE4, enhance 
microglial migration, promote Aβ uptake, and induce a 
stronger activation response, with these effects being 
more pronounced in the absence of TREM2 [272]. These 
findings suggest that isoform-specific variations in phos-
pholipid composition contribute to differences in APOE 
lipidation, which may, in turn, influence APOE-TREM2 
interactions and microglial function in Aβ pathology 
[272].

Lipidated APOE plays a crucial role in Aβ metabolism 
by forming complexes with Aβ, facilitating its rapid clear-
ance by microglia, and reducing Aβ toxicity [278, 285]. 
However, poorly lipidated APOE4 exhibits reduced bind-
ing affinity to Aβ, leading to slower clearance, increased 
Aβ toxicity, and heightened inflammation [210, 285–
287]. Furthermore, the R47H variant of TREM2 not only 
shows reduced binding affinity for APOE [263, 267, 277] 
but also disrupts downstream microglial signaling path-
ways [288, 289], impairing Aβ clearance and exacerbating 
neuroinflammation. Aβ interacts with both the lipid-
binding and receptor-binding domains of APOE, further 
complicating APOE-TREM2 interactions and their con-
sequences for microglial function [290, 291].

Given these complexities, a comprehensive under-
standing of the interactions between APOE and its vari-
ous receptors, including but not limited to TREM2, is 
crucial for elucidating the mechanisms underlying micro-
glial dysfunction in AD. In particular, research should 
focus on how APOE isoform differences, lipidation sta-
tus, and phospholipid composition influence these recep-
tor interactions and downstream signaling pathways. 
Gaining these insights may facilitate the development of 
targeted therapeutic strategies that effectively address 
both Aβ and tau pathologies in AD.

Hypoxia‑inducible factors
Metabolic plasticity refers to the ability of cells to adapt 
their metabolic processes in response to changing 
environmental conditions or internal needs. The driv-
ers of metabolic reprogramming that have been most 
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extensively studied are changes in nutrient availability 
and oxygen levels [292, 293]. Hypoxia occurs when cells, 
especially during inflammation, experience increased 
oxygen consumption [294, 295]. It is a well-established 
driver of glycolysis, as oxygen deficiency restricts 
OXPHOS efficiency. Hypoxia-inducible factor 1 (HIF-
1) is a heterodimeric transcription factor consisting of 
HIF-1α and HIF-1β that plays a crucial role in cellular 
response to low oxygen conditions, or hypoxia [295, 296]. 
Under hypoxic conditions, HIF-1 facilitates sustained 
ATP production by upregulating hexokinase and phos-
phofructokinase to enhance anaerobic glycolysis and by 
increasing GLUT1 expression to enhance glucose uptake 
[295, 297, 298]. HIF-1α stabilization is not limited to 
hypoxia but can also be stabilized under normoxic con-
ditions via pro-inflammatory cytokines (e.g., TNF-α and 
IL-1β) [299], metabolic intermediates of the TCA cycle 
(e.g., succinate and fumarate) [300], and NO [301, 302]. 
These factors inhibit prolyl hydroxylase (PHD) activity, 
preventing HIF-1α degradation [300, 301]. Such nor-
moxic regulatory mechanisms, observed in macrophages 
[297, 303], may also influence microglial metabolism.

Hypoxia and inflammation are closely linked, with 
HIF-1 serving as a key switch in glycolytic reprogram-
ming and acting as a crucial transcriptional regulator of 
immunity and inflammation [294, 295, 298, 304]. Baik 
et al. demonstrated that primary microglia exposed to Aβ 
induce metabolic reprogramming from OXPHOS to glyc-
olysis via the mTOR-HIF-1α pathway, leading to an acute 
inflammatory state [46]. However, chronic Aβ exposure 
results in metabolic deficits and downregulation of the 
mTOR-HIF-1α pathway, impairing microglial function 
and reducing their phagocytic capacity [46]. Restora-
tion of this pathway via IFN-γ treatment in 5xFAD mice 
reactivated microglial immune responses and enhanced 
phagocytic function, suggesting metabolic modula-
tion as a potential therapeutic approach for AD [46]. 
Conversely, Yang et  al. proposed a contrasting strategy 
that targets the same pathway but employs an opposing 
approach [305]. They developed an immunometabolic 
reprogramming nanomodulator (GAF NPs) that inhibits 
the mTOR-HIF-1α pathway, shifting microglial metabo-
lism from glycolysis to OXPHOS and promoting an 
M2 anti-inflammatory phenotype. This inhibition was 
accompanied by GLUT1 suppression, reducing glucose 
uptake and further limiting glycolytic activity. By damp-
ening excessive inflammatory responses, this strategy led 
to cognitive improvement and decreased Aβ accumula-
tion in APP-PS1 mice [305]. A recent study introduced 
a peptide-drug conjugates (PDCs)-based nanoplatform 
designed to enhance microglial function by restoring the 
mTOR-HIF-1α pathway, particularly in later stages of 
AD pathology [306]. Notably, this study used the same 

APP-PS1 model as Yang et al., yet adopted a strategy sim-
ilar to Baik et al. by upregulating HIF-1α. The research-
ers found that the activation state of the mTOR-HIF-1α 
pathway was highly dependent on disease progression. In 
APP-PS1 mice, HIF-1α and p-mTOR were significantly 
elevated at 7 months of age, aligning with the timing of 
Yang et  al.’s intervention, which aimed to suppress this 
pathway. However, by 9 months of age, a sharp decline in 
HIF-1α and mTOR activity was observed, indicative of an 
immune-suppressed state resembling the chronic phase 
described by Baik et al. In this context, PDCs treatment 
successfully restored mTOR-HIF-1α signaling, leading 
to improved microglial function and neuroprotection in 
advanced-stage AD [306]. These findings reinforce the 
notion that disease progression and microglial meta-
bolic states can vary depending on the animal model 
and experimental time points. The opposing strategies 
proposed by Baik et al. and Yang et al. may not be mutu-
ally exclusive but rather context-dependent, influenced 
by the stage of AD pathology at which the intervention 
is applied. Therefore, the therapeutic success of targeting 
the HIF-1α-mTOR pathway may depend on precise tim-
ing to maximize its efficacy, underscoring the importance 
of understanding microglial metabolic transitions across 
different disease stages for the development of effective 
immunometabolic interventions in AD.

In 5XFAD mice, microglia exhibit distinct transcrip-
tional profiles depending on whether they contain Aβ 
[307]. In 5XFAD mice, microglia containing Aβ exhib-
ited a distinct transcriptional profile characterized by 
an active HIF-1α regulon. Notably, microglia with this 
transcriptional signature are also increased in postmor-
tem AD brains [307]. This upregulation of HIF-1α may 
support the enhanced metabolic and phagocytic activi-
ties required to manage the pathological environment 
induced by Aβ plaques in AD. Similar findings have been 
observed in Aβ-associated microglia of APP-PS1 mice, 
where activation of the HIF-1 pathway and transcrip-
tion of mitochondrial-related genes were noted. This was 
accompanied by mitochondrial elongation, an adaptive 
response to support aerobic respiration under low nutri-
ent and oxygen conditions [308]. However, sustained 
HIF-1 activation or prolonged hypoxia can induce micro-
glial quiescence, diminishing their responsiveness to Aβ. 
This low-reactivity state diminishes microglial clustering 
around Aβ plaques, ultimately exacerbating Aβ pathology 
[308].

Additionally, the complement C3a receptor (C3aR) 
signaling pathway has been implicated in microglial met-
abolic regulation, in part through its influence on HIF-1α 
activity [309]. Under hypoxia-mimicking conditions, 
C3aR-deficient microglia exhibited reduced HIF-1α lev-
els, which was accompanied by the downregulation of 
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its glycolysis-promoting target genes, including PDK1, 
PFKL, and PFK2 [309]. Notably, these microglia exhib-
ited resistance to hypoxia mimetic-induced metabolic 
changes and lipid droplet accumulation. Consistent with 
these findings, C3aR expression is elevated around Aβ 
plaques in APP-KI mice, where microglia with high C3aR 
expression show metabolic impairments characterized by 
increased HIF-1α signaling and disrupted lipid metabo-
lism, ultimately affecting their response to Aβ pathology 
[309]. However, C3aR deficiency in these mice restored 
lipid profiles, reduced lipid droplet accumulation, and 
enhanced microglial phagocytic capacity. These changes 
were accompanied by a decrease in Aβ burden and a 
modest improvement in cognitive function [309]. This 
suggests that the C3aR/HIF-1α axis plays a critical role in 
regulating microglial metabolic adaptation and may be a 
potential therapeutic target in AD.

Further evidence linking HIF-1α to microglial metabo-
lism comes from studies implicating key AD risk genes, 
such as TREM2 and APOE4, in its regulation. In an AD 
mouse model, TREM2 deficiency leads to significant 
metabolic alterations in microglia, including reduced 
mitochondrial mass and downregulated HIF-1α expres-
sion [35]. This suggests that TREM2 plays a vital role in 
maintaining microglial metabolic fitness through regula-
tion of HIF-1α-mediated glycolytic pathways. Conversely, 
APOE4 promotes a glycolytic phenotype in microglia via 
increased HIF-1α activation, particularly in aging. Aged 
APOE4 microglia exhibit elevated aerobic glycolysis, 
accumulation of glycolytic metabolites, and the emer-
gence of a DAM-like microglial subpopulation [70]. This 
HIF-1α-high, DAM-like phenotype is linked to disrupted 
cholesterol metabolism, further highlighting the inter-
play between APOE4, microglial metabolic states, and 
AD pathology [70].

These findings underscore the complex and context-
dependent role of HIF-1α in AD pathology. The effects 
of HIF-1α modulation likely depend on microglial activa-
tion states, disease progression, and cellular metabolism, 
necessitating a nuanced approach when considering it as 
a therapeutic target.

AMPK
Adenosine monophosphate-activated protein kinase 
(AMPK), a serine/threonine protein kinase, serves as an 
energy sensor and master regulator, playing a pivotal role 
in maintaining cellular energy homeostasis [310]. Beyond 
its role as an energy sensor, AMPK coordinates multiple 
metabolic pathways, including glucose metabolism, lipid 
metabolism, and protein synthesis, to adapt cellular func-
tion under energy stress conditions [310–312]. Classical 
activation of AMPK occurs when the ratio of adenine 
nucleotides (AMP to ATP and/or ADP to ATP) within 

the cell increases. Upon activation, AMPK restores 
ATP levels during metabolic stress by simultaneously 
inhibiting ATP-consuming biosynthetic pathways and 
activating ATP-generating catabolic pathways [78]. Fur-
thermore, AMPK phosphorylates multiple transcription 
factors such as FOXO3, CREB, and p300 that play crucial 
roles in biosynthetic pathways and metabolism regula-
tion [310]. Through these mechanisms, AMPK rapidly 
restores energy balance and transcriptionally modulates 
cell metabolism in response to long-term energy deficits 
[313].

Autophagy plays a crucial role in maintaining micro-
glial homeostasis by enabling cells to adapt to meta-
bolic stress through the degradation and recycling of 
cellular components [314]. AMPK activation promotes 
autophagy by inhibiting mTOR, a key regulator of cell 
growth that suppresses autophagy in nutrient-rich con-
ditions [315]. This AMPK-mTOR balance is particularly 
crucial in microglial function, as it regulates inflamma-
tory responses and microglial polarization [316–318]. In 
neurodegenerative diseases such as AD, persistent meta-
bolic stress and inflammation impair autophagic flux, 
leading to the accumulation of dysfunctional proteins 
and organelles [314, 319]. By modulating catabolic and 
anabolic processes [320], AMPK signaling contributes to 
maintaining cellular adaptation and homeostasis, poten-
tially influencing Aβ clearance and neuroinflammation 
dynamics.

As AMPK activation exerts anti-inflammatory effects 
[321], metabolic changes in response to immune stim-
uli may suppress AMPK function, leading to immune 
responses such as pro-inflammatory cytokine secretion 
and inflammasome activation. As late-stage AD pro-
gresses, chronic low-level inflammation persists, exac-
erbating neurotoxicity. Aβ-driven neuroinflammation 
is partly mediated through the NLRP3 inflammasome 
[322], which is activated in microglia following AMPK 
inhibition and Syk signaling activation. Research shows 
that AMPK deactivation leads to metabolic dysregula-
tion, mitochondrial fragmentation, and reactive oxygen 
species production, thereby promoting NLRP3 inflam-
masome activation [323]. As a central regulator of cel-
lular metabolism, AMPK influences multiple metabolic 
pathways, including TCA cycle, FAO, cholesterol home-
ostasis, and glycolysis, to maintain energy balance. As 
these metabolic processes are also involved in NLRP3 
inflammasome activation [206, 324–326], AMPK dys-
function may further exacerbate neuroinflammatory 
reponses in AD by disrupting metabolic homeostasis. In 
this context, NSAIDs or metformin, which have a direct 
anti-inflammatory function and enhance AMPK activity, 
may serve as potential adjuvant treatments to modulate 
microglial immunometabolism [323, 327–330].
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Interestingly, INPP5D, a microglial gene identified 
through GWAS as a late-onset AD risk factor [13, 67, 
331], has been implicated in autophagy and NLRP3 
inflammasome activation [332], both of which are closely 
linked to AMPK signaling and metabolic regulation [333, 
334]. While INPP5D expression is elevated in amyloid 
plaque-associated microglia [332, 335], its functional role 
appears to be context-dependent, with potential contri-
butions to both protective and pathological processes 
[336–338]. A recent study reported that the functional 
decline caused by INPP5D reduction is associated with 
disrupted autophagy flux and increased activation of 
the NLRP3 inflammasome [332]. However, INPP5D can 
modulate the downstream activity of multiple receptors 
involved in microglial activation and function [337], and 
AMPK signaling can influence intracellular pathways 
that are also affected by INPP5D, necessitating further 
research to clarify its role in AD pathogenesis.

AMPK plays a central role in regulating cellular metab-
olism, influencing multiple pathways including glucose 
metabolism, lipid homeostasis, mitochondrial function, 
energy production and utilization, and protein synthesis 
[311]. Through these metabolic networks, AMPK modu-
lates cellular stress responses, coordinating autophagy, 
mitophagy, and lysosomal function while also shaping 
inflammatory pathways such as NLRP3 inflammasome 
activation [318]. Given its ability to integrate metabolic 
and immune signaling, AMPK represents a key node 
linking energy homeostasis to neuroinflammatory regu-
lation in AD pathogenesis.

These multifaceted roles of AMPK in regulating 
microglial inflammatory responses offer insights into 
its function and impact on AD pathogenesis. As a cen-
tral metabolic regulator, AMPK influences various pro-
cesses, including autophagy, mitochondrial homeostasis, 
and immune responses, making it a compelling target 
for therapeutic intervention [339–342]. However, AMPK 
operates within a complex signaling network involving 
LOAD risk genes such as TREM2 and other metabolic 
regulators [343, 344], meaning its modulation could have 
varying effects depending on cellular context, disease 
stage, and microglial activation states [57, 341]. Directly 
targeting AMPK may lead to unintended consequences, 
highlighting the need to carefully consider whether 
modulating upstream regulators or downstream path-
ways—such as autophagy and NLRP3 inflammasome 
activation—offers a more viable therapeutic strategy for 
AD.

Hexokinase
Hexokinases (HKs) are the initial rate-limiting enzymes 
in glucose metabolism, catalyzing the phosphorylation 
of glucose to glucose-6-phosphate (G-6-P), thereby 

initiating the first committed step in glycolysis. Recent 
studies on tissue-resident macrophages, including 
microglia, have highlighted the critical role of hexoki-
nase in glycolysis and its influence on mitochondrial 
function, which is dynamically regulated by inflam-
matory activation and plays a key role in immune 
responses [345–347]. Mammals express five isoforms 
of hexokinase (HK), with the four primary isoforms 
being HK1, HK2, HK3, and HK4 (also known as glu-
cokinase), along with an additional isoform, HKDC1. 
Among these, HK1, HK2, and HK4 are localized to 
the outer mitochondrial membrane (OMM), where 
they interact with voltage-dependent anion channels 
(VDACs) to facilitate ATP-dependent glucose phos-
phorylation [348]. In the brain, HK1, HK2, and HK3 are 
expressed, but notably, HK2 levels were significantly 
elevated in AD patients [50, 75, 349]. RNA-seq analy-
ses across various brain cell types, supported by in situ 
hybridization and immunoblotting, revealed that HK2 
is selectively enriched in microglia, both in murine and 
human brains, compared to other brain cells. Moreo-
ver, HK2 expression was markedly elevated in microglia 
undergoing immune activation or associated with dis-
ease states [349]. Surprisingly, contrary to the expecta-
tion that depleting HK2—the initial enzyme in energy 
metabolism—would suppress metabolism, its dele-
tion instead increased microglial energy demand and 
enhanced phagocytic activity [75, 349]. These findings 
suggest that HK2 overexpression in microglia does not 
efficiently support the energy requirements for phago-
cytosis. Interestingly, under chronic conditions such 
as AD, genetic or pharmacological depletion of HK2 
induced a metabolic shift in microglia from glucose-
dependent metabolism to lipid utilization. This meta-
bolic adaptation enhanced ATP production, thereby 
delaying the onset of AD symptoms in mouse models 
[75, 350]. Beyond its role in glycolysis, HK2 also has 
non-metabolic functions [351–353], contributing to 
microglial inflammatory responses. Its impact on dis-
ease progression appears to be gene-dosage-dependent, 
as complete deletion of HK2 exacerbates inflammation 
and mitochondrial dysfunction, whereas partial reduc-
tion (haploinsufficiency) alleviates AD pathogenesis in 
AD model mice [50].

These findings suggest that the balance between 
HK2’s metabolic and non-metabolic functions is tightly 
regulated in response to physiological and pathological 
stimuli. Further research into the multifaceted roles of 
HK2 will be essential to understanding the reciprocal 
regulation of metabolic and inflammatory processes in 
microglia and their contributions to AD pathogenesis 
and progression.
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Conclusion and future directions
Recent advances in multi-omics technologies, includ-
ing single-cell genomics, transcriptomics, proteom-
ics, metabolomics, and epigenomics, have unveiled the 
remarkable heterogeneity of microglial states under 
both physiological and pathological conditions. This 
diversity reflects the dynamic nature of microglia, which 
continuously adapt to genetic and environmental influ-
ences throughout aging and neurodegenerative processes 
(Fig. 1, Table 1). While this complexity poses challenges 
for drug development, it also presents new opportunities 
for therapeutic intervention in Alzheimer’s disease (AD). 
Given the critical role of metabolic regulation in micro-
glial function, targeting metabolic pathways has emerged 
as a promising therapeutic approach for AD [43, 45, 92, 
305]. However, the intricate interplay between micro-
glial transcriptional states, metabolic adaptations, and 
functional roles necessitates a more refined therapeutic 
strategy. The identification of distinct microglial sub-
populations, each exhibiting unique metabolic profiles 
and functional states [354–356], highlights the need for 
a comprehensive and context-dependent understand-
ing of microglial behavior in AD. Despite these insights, 
methodological limitations—such as incomplete capture 
of microglial states and insufficient spatial resolution in 
pathology assessment—continue to impede progress.

A recent study has provided a detailed gene expres-
sion map across multiple brain regions in both AD 
patients and healthy individuals [357]. This study identi-
fied cell type- and region-specific genetic alterations in 
AD, revealing transcriptomic differences associated with 
diverse pathological factors [357]. These findings under-
score the complexity of microglial metabolic networks 
and emphasize the necessity of considering genetic pre-
dispositions, environmental influences, and comorbidi-
ties in the development of targeted therapeutic strategies.

Growing evidence suggests a bidirectional relationship 
between AD pathology and microglial metabolic dys-
function. Aβ and tau aggregates drive metabolic repro-
gramming, impairing microglial immune function [46, 
53, 86, 87, 358]. Conversely, pre-existing metabolic dis-
turbances may predispose microglia to a dysfunctional 
state, further exacerbating AD progression [60, 359, 360]. 
This interplay may differ between sporadic and famil-
ial AD, where familial AD is primarily driven by early 
Aβ accumulation, whereas sporadic AD appears to be 
more influenced by systemic metabolic dysfunction and 
neuroinflammation [361–363]. Moreover, metabolic 
disorders such as obesity and type 2 diabetes, which are 
closely linked to an increased risk of AD [364–369], along 
with their associated metabolic hormones, may influ-
ence brain immunity and microglial function [370–374]. 
Individuals with these metabolic conditions may exhibit 

reduced microglial resilience to pathological stimuli such 
as Aβ, thereby impairing their ability to mount an effec-
tive response. This diminished adaptive capacity may lead 
to defective immune responses and compromised Aβ 
clearance, ultimately accelerating AD progression.

Moving forward, research efforts should aim to clar-
ify the mechanistic links between metabolic pathways 
and microglial dysfunction, as well as to identify novel 
therapeutic targets that restore microglial homeosta-
sis. A deeper understanding of how systemic metabolic 
status influences microglial function will be essential for 
designing effective AD treatments. Additionally, inte-
grating these findings within the spatial and temporal 
framework of disease progression is crucial for the devel-
opment of precision-targeted therapies. Addressing these 
challenges may pave the way for metabolic-based thera-
peutic interventions, offering a transformative approach 
to AD treatment.
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